3.6.86 \(\int \frac {1}{x \sqrt {a+b x^n+c x^{2 n}}} \, dx\) [586]

Optimal. Leaf size=47 \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b x^n}{2 \sqrt {a} \sqrt {a+b x^n+c x^{2 n}}}\right )}{\sqrt {a} n} \]

[Out]

-arctanh(1/2*(2*a+b*x^n)/a^(1/2)/(a+b*x^n+c*x^(2*n))^(1/2))/n/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {1371, 738, 212} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {2 a+b x^n}{2 \sqrt {a} \sqrt {a+b x^n+c x^{2 n}}}\right )}{\sqrt {a} n} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[a + b*x^n + c*x^(2*n)]),x]

[Out]

-(ArcTanh[(2*a + b*x^n)/(2*Sqrt[a]*Sqrt[a + b*x^n + c*x^(2*n)])]/(Sqrt[a]*n))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1371

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {a+b x^n+c x^{2 n}}} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,x^n\right )}{n}\\ &=-\frac {2 \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b x^n}{\sqrt {a+b x^n+c x^{2 n}}}\right )}{n}\\ &=-\frac {\tanh ^{-1}\left (\frac {2 a+b x^n}{2 \sqrt {a} \sqrt {a+b x^n+c x^{2 n}}}\right )}{\sqrt {a} n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.12, size = 46, normalized size = 0.98 \begin {gather*} \frac {2 \tanh ^{-1}\left (\frac {\sqrt {c} x^n-\sqrt {a+x^n \left (b+c x^n\right )}}{\sqrt {a}}\right )}{\sqrt {a} n} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[a + b*x^n + c*x^(2*n)]),x]

[Out]

(2*ArcTanh[(Sqrt[c]*x^n - Sqrt[a + x^n*(b + c*x^n)])/Sqrt[a]])/(Sqrt[a]*n)

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {1}{x \sqrt {a +b \,x^{n}+c \,x^{2 n}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(a+b*x^n+c*x^(2*n))^(1/2),x)

[Out]

int(1/x/(a+b*x^n+c*x^(2*n))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^(2*n) + b*x^n + a)*x), x)

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 148, normalized size = 3.15 \begin {gather*} \left [\frac {\log \left (-\frac {8 \, a b x^{n} + 8 \, a^{2} + {\left (b^{2} + 4 \, a c\right )} x^{2 \, n} - 4 \, {\left (\sqrt {a} b x^{n} + 2 \, a^{\frac {3}{2}}\right )} \sqrt {c x^{2 \, n} + b x^{n} + a}}{x^{2 \, n}}\right )}{2 \, \sqrt {a} n}, \frac {\sqrt {-a} \arctan \left (\frac {{\left (\sqrt {-a} b x^{n} + 2 \, \sqrt {-a} a\right )} \sqrt {c x^{2 \, n} + b x^{n} + a}}{2 \, {\left (a c x^{2 \, n} + a b x^{n} + a^{2}\right )}}\right )}{a n}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(-(8*a*b*x^n + 8*a^2 + (b^2 + 4*a*c)*x^(2*n) - 4*(sqrt(a)*b*x^n + 2*a^(3/2))*sqrt(c*x^(2*n) + b*x^n +
a))/x^(2*n))/(sqrt(a)*n), sqrt(-a)*arctan(1/2*(sqrt(-a)*b*x^n + 2*sqrt(-a)*a)*sqrt(c*x^(2*n) + b*x^n + a)/(a*c
*x^(2*n) + a*b*x^n + a^2))/(a*n)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x \sqrt {a + b x^{n} + c x^{2 n}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+b*x**n+c*x**(2*n))**(1/2),x)

[Out]

Integral(1/(x*sqrt(a + b*x**n + c*x**(2*n))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^(2*n) + b*x^n + a)*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{x\,\sqrt {a+b\,x^n+c\,x^{2\,n}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x^n + c*x^(2*n))^(1/2)),x)

[Out]

int(1/(x*(a + b*x^n + c*x^(2*n))^(1/2)), x)

________________________________________________________________________________________